

MATHEMATICS (EXTENSION 2)

2015 HSC Course Assessment Task 1 Friday Dec 5, 2014

General instructions

- Working time 60 minutes. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

(SECTION I)

• Mark your answers on the answer sheet provided (numbered as page 3)

(SECTION II)

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER:		# BOOKLETS USED:
Class (please ✔)		
○ 12M4A – Mr Lam	\bigcirc 12M4B – Mr Ireland	\bigcirc 12M4C – Mr Lin

Marker's use only.

QUESTION	1-5	6	7	8	Total	%
MARKS	- 5	1 4	11	15	$\overline{45}$	100

Section I

5 marks

Attempt Question 1 to 5

Mark your answers on the answer sheet provided.

Questions Marks

1. If
$$z = \sqrt{2} \left(\cos \left(-\frac{4\pi}{5} \right) + i \sin \left(-\frac{4\pi}{5} \right) \right)$$
 then z^9 is equal to:

(A)
$$z = 16\sqrt{2} \left(\cos \left(\frac{36\pi}{5} \right) + i \sin \left(\frac{36\pi}{5} \right) \right)$$

(B)
$$z = 16\sqrt{2}\left(\cos\left(-\frac{\pi}{5}\right) + i\sin\left(-\frac{\pi}{5}\right)\right)$$

(C)
$$z = 16\sqrt{2} \left(\cos \left(\frac{4\pi}{5} \right) + i \sin \left(\frac{4\pi}{5} \right) \right)$$

(D)
$$z = 9\sqrt{2}\left(\cos\left(-\frac{\pi}{5}\right) + i\sin\left(-\frac{\pi}{5}\right)\right)$$

2. If
$$P(z) = z^3 - 2z^2 + 4z - 8, z \in \mathbb{C}$$
, then a linear factor of $P(z)$ is

- (A) 2
- (B) 2i
- (C) z + 2
- (D) z + 2i

3. The distance between the two points
$$z$$
 and $-\overline{z}$ in the complex plane is given by

- (A) $2 \operatorname{Re}(z)$
- (B) $2 \operatorname{Im}(z)$
- (C) |z|
- (D) 2 Re(z) + 2 Im(z)

1

- **4.** P(z) is a polynomial in z of degree 4 with real coefficients. Which of the following statements **must** be **false**.
 - (A) P(z) = 0 has no real roots.
 - (B) P(z) = 0 has one real root and three non-real roots.
 - (C) P(z) = 0 has two real roots and two non-real roots
 - (D) P(z) = 0 has four real roots
- **5.** Given that $(1+i)^n = ai$, where a is a non-zero real constant, then $(1+i)^{2n+2}$ **1** simplifies to
 - (A) a^4
 - (B) $2a^2i$
 - (C) $1 + a^2i$
 - (D) $-2a^2i$

Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g "●"

- 1 (A) (B) (C) (D)
- $\mathbf{2}$ (A) (B) (C) (D)
- 3 (A) (B) (C) (D)
- $\mathbf{4}$ (A) (B) (C) (D)
- $\mathbf{5}$ (A) (B) (C) (D)

Examination continues overleaf...

Section II

40 marks

Attempt Questions 6 to 8

Write your answers in the writing booklets supplied. Additional writing booklets are available. Your responses should include relevant mathematical reasoning and/or calculations.

Ques	stion 6 (14 Marks) Co	ommence a NEW page.	Marks
(a)	Express $(2-3i)^2$ in the form $a+ib$, w	here a and b are real	2
(b)	z is the complex number $1+i$ Write the	ne following in modulus-argument form	
	i. <i>z</i>		2
	ii. iz		1
(c)	Sketch on the Argand diagram the loca	as $ z-1 = z+1-2i $	2
(d)	On an Argand diagram, graph the inte	rsection of the regions defined by	4
	$z\overline{z} \ge 9, \ z + \overline{z} \le 8$	and $0 < \arg z < \frac{\pi}{4}$	
(e)	Let ω be one of the non-real cube root	s of 1	
	i. Show that $1 + \omega + \omega^2 = 0$		1
	ii. Hence or otherwise, prove that ($(1 + \omega - \omega^2)^3 - (1 - \omega + \omega^2)^3 = 0.$	2

Question 7 (11 Marks)

Commence a NEW page.

Marks

(a) Find constants A, B, and C so that

 $\mathbf{2}$

$$\frac{1}{1+x+x^2+x^3} = \frac{A}{1+x} + \frac{Bx+C}{1+x^2}$$

(b) Find the integers m and n such that $(x+1)^2$ is a factor of the polynomial

3

$$P(x) = x^5 + 2x^2 + mx + n$$

(c) If α , β , γ are the roots of $x^3 + mx + n = 0$, form the equation whose roots are

3

3

$$\frac{1}{\alpha+\beta},\,\frac{1}{\beta+\gamma},\,\frac{1}{\gamma+\alpha}$$

(d) The equation $x^3 + px^2 + qx + r = 0$ has one root equal to the sum of the other two. Show that $p^3 - 4pq + 8r = 0$

Examination continues overleaf...

Question 8 (15 Marks)

Commence a NEW page.

Marks

(a) The four complex numbers z_1 , z_2 , z_3 , z_4 are represented on the complex plane by the points A, B, C, D respectively.

/Iai K

Given that

$$z_1 - z_2 + z_3 - z_4 = 0$$
 and $z_1 - iz_2 - z_3 + iz_4 = 0$

use vectors to determine the possible shape(s) for the quadrilateral ABCD. Show all reasoning.

- (b) Consider the polynomial equation: $z^5 i = 0$
 - i. Find all the roots of $z^5 i = 0$. You may leave the roots in the form of $\cos \theta$.
 - ii. Hence show that

$$(z-i)\left[z^2 - \left(2i\sin\frac{\pi}{10}\right)z - 1\right]\left[z^2 + \left(2i\sin\frac{3\pi}{10}\right)z - 1\right] = 0$$

- iii. Hence or otherwise deduce that $\sin \frac{3\pi}{10} \sin \frac{\pi}{10} = \frac{1}{2}$
- (c) If $\frac{z-1+i}{z+1-i} = ki$, where $k \in \mathbb{R}$

By drawing a diagram or otherwise, find the value of |z|. Show all reasoning.

End of paper.

1. C 2. D 3. A 4. B 5. D

Question 6

d)

a)
$$(2-3i)^2 = 4+2(-3i) \times 2 + 9i^2$$

= -5-12i

b) (i) Iti =
$$\sqrt{2}$$
 (cos $\frac{\pi}{4}$ tisin $\frac{\pi}{4}$)

(ii)
$$iz = \sqrt{2} \left(us \left(\frac{\pi}{4} + \frac{\pi}{2} \right) + isin \left(\frac{\pi}{4} + \frac{\pi}{2} \right) \right)$$

$$= \sqrt{2} \left(cos \left(\frac{3\pi}{4} \right) + isin \left(\frac{3\pi}{4} \right) \right)$$

2 Pe(z)

 $\frac{4}{3}$ $\frac{\pi}{4}$ $\frac{3}{4}$

$$Z\overline{Z} > 9 \Rightarrow x^2 + y^2 > 9$$

 $Z + \overline{Z} \le 8 \Rightarrow 2 \operatorname{Re}(z) \le 8$
 $\operatorname{Re}(z) \le 4$
 $\chi \le 4$

e) i) Since ω is a non real cube root of $\mathbb{Z}^3-1=0$ and $(\mathbb{Z}-1)(1+\mathbb{Z}+\mathbb{Z}^2)=0$ upon factorising then $1+\omega+\omega^2=0$ as $\omega-1\neq 0$

 $\Rightarrow 1+\omega = -\omega^{2}$ and $1+\omega^{2} = -\omega$ LHS= $(1+\omega-\omega^{2})^{3} - (1-\omega+\omega^{2})^{3}$ $= (-\omega^{2}-\omega^{2})^{3} - (-\omega-\omega)^{3}$ $= (-2\omega^{2})^{3} - (-2\omega)^{3}$ $= -8(\omega^{3})^{2} - (-8\omega^{3})$ $= -8+8 \quad (as \quad \omega^{3} = 1)$

As itwow=0

Cil

= 0 = RHS

Question 7

$$\frac{1}{1+x^2+x^3} = \frac{A}{1+x} + \frac{Bx+C}{1+x^2}$$

$$A = \frac{1}{2}$$

when x=0

$$C = \frac{1}{2}$$

equating coefficient of x2

b)
$$P'(x) = 5x^4 + 4x + m$$

Because there is a double root at x=-1

$$M = -1$$

$$P(-1) = (-1)^{5} + 2(-1)^{2} - (-1) + N = 0$$

$$N = -2$$

c)
$$x^3 + mx + n = 0$$

Sum at the 1sets

Similarly

Substitute & with - 1

$$\left(-\frac{1}{\lambda}\right)^3 + m\left(-\frac{1}{2}\right) + n = 0$$

sum of the roots: 20+28=-P

$$A + 8 = -\frac{p}{a}$$

Now B+8 is a root : - P is a root

Sub
$$\frac{c}{2}$$
 in $x^3 + px^2 + qx + r = 0$

$$\left(-\frac{p}{2}\right)^3 + p\left(-\frac{p}{2}\right)^2 + q\left(-\frac{p}{2}\right) + r = 0$$

$$-\frac{p^3}{8} + \frac{p^3}{4} - \frac{pq}{2} + r = 0$$

multiply through by 8

 α)

If
$$Z_1 - Z_2 + Z_3 - Z_4 = 0$$

 $Z_1 - Z_4 = Z_2 - Z_3$
 $CB = DA$

(One pair of opposite sides

equal in length and parallel)

Now if
$$Z_1 - i Z_2 - Z_3 + i Z_4 = 0$$

 $Z_1 - Z_3 = i (Z_2 - Z_4)$

> AC is a image of BD with rotation of 900

.. diagonals are perpendicular and equal in length

. ABCD can only be a square.

b) i)
$$Z^{5}-i=0 \Rightarrow Z^{5}=i=cis(\frac{\pi}{2}+2k\pi)$$
, $k\in\mathbb{Z}$

$$Z=i^{\frac{1}{5}}=(cis(\frac{\pi}{2}+2k\pi))^{\frac{1}{5}}$$

using de Moivrels Theorem

$$Z = \operatorname{Cis}\left(\frac{\pi + 4 \, \mathrm{km}}{10}\right)$$

For 5 routs , k=-2,-1,0,1,2

$$Z_1 = cis\left(-\frac{7\pi}{10}\right)$$
 $Z_4 = cis\left(\frac{5\pi}{10}\right) = i$

$$Z_2 = \operatorname{cis}\left(-\frac{3\pi}{10}\right)$$
 $Z_5 = \operatorname{cis}\left(\frac{9\pi}{10}\right)$

11) Now
$$Z^{5} - i = (Z - i)(Z - Cis \frac{\pi}{10})(Z - Cis (-\frac{3\pi}{10}))(Z - Cis (-\frac{7\pi}{10}))$$

For $(Z - Cis \frac{\pi}{10})(Z - Cis \frac{9\pi}{10})$
 $= Z^{2} - ZCis \frac{9\pi}{10} - ZCis \frac{\pi}{10} + Cis \frac{\pi}{10} Cis \frac{9\pi}{10}$
 $= Z^{2} - Z [\cos \frac{9\pi}{10} + cisin \frac{9\pi}{10} + Cis \frac{\pi}{10}] + Cis \pi$

$$= Z^{2} - Z \left[-\cos\left(\frac{\pi}{10}\right) + i\sin\frac{\pi}{10} + \cos\frac{\pi}{10} + i\sin\frac{\pi}{10} \right] - 1$$
as
$$\cos\left(\pi - x\right) = -\cos x$$
and
$$\sin\left(\pi - x\right) = \sin x$$

$$\cos^{2}\pi + i\sin x = -1$$

$$Z^{5} - i = (z - i)(z^{2} - (2i\sin \frac{\pi}{10})z - 1)(z^{2} + (2i\sin \frac{3\pi}{10})z - 1) = 0$$

From (ii)
$$2i\sin\frac{\pi}{10} + cis\left(-\frac{3\pi}{10}\right) + cis\left(-\frac{7\pi}{10}\right) = 0$$

$$2i\sin\frac{\pi}{10} - 2i\sin\frac{3\pi}{10} = -i$$

$$\sin\frac{3\pi}{10} - \sin\frac{\pi}{10} = \frac{1}{2}$$

c) arg
$$(\frac{Z-(1-i)}{Z-(-1+i)}) = \pm \frac{\pi}{2}$$

Note that (1,-1) is actually part of the solution

- Forms a right angle at circumterence

. AB is the diameter of a circle